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1 Gene expression analysis

1.1 qPCR

←↩ To test for temperature and parental effects on genes known to be involved in envi-
ronmental stress responses, we measured the expression of three genes: a control gene
(RBM8A) and two chaperones (Hsp70 and Hsp90 ) in the 12C and 18C treatments of
the first experimental replicate with qPCR. These chaperone genes were not included on
the DASL array (see below). qPCR primers are listed in Table S1. RNA samples were
converted to cDNA using the High Performance cDNA Archive kit [Applied Biosystems].
We used the Qiagen SYBR-Fast kit on a Mastercycler ep realplex2 Thermal Cycler [Ep-
pendorf] for all assays. Primers were tested for correlation (R2 > 0.99) and efficiency
(95% − 105%) using an 8-point standard curve of cDNA from a similarly staged larval
culture. All qPCR measurements were run in triplicate with both chaperone genes and
the control run on the same plate. Raw Ct scores are provided in Table S2. Samples were
dropped if the standard deviation of Ct scores of either the focal gene or the reference
gene was > 0.5. This left 44 and 42 samples, for Hsp70 and Hsp90, respectively, with
nearly equal numbers of samples at 12C and 18C and from each of the four male and four
female parents. Relative expression values were calculated as:

Ri =
E(focal)∆Ct(focal)

E(ctl)∆Ct(ctl)

for sample i, were E(focal) is the amplification efficiency of the focal gene, E(ctl) is
the amplification efficiency of RBM8A, and the ∆Ct are Ct(ref)−Ct(focal)i and Ct(ref)−
Ct(ctl)i, respectively, with the Ct(ref) chosen as the mean Ct across the whole experiment.
This calculation is based on the methods of Pfaffl (2001) and Hellemans et al. (2007) for
normalization and minimizing variation, respectively. Tests for differential expression were
performed by ANOVA on the log2R values. Models were selected from a full model with
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temperature, female and male parent effects and all pairwise interactions by backwards
model selection, removing effects until all remaining effects were significant (α = 0.05).

1.2 RNA-seq by SOLiD

1.2.1 Library preparation

←↩ We chose seven samples representing three female and two male parents (Table S3)
and used RNAseq on the SOLiD 3 plus platform (Life Technologies) to characterize
transcriptome-wide differences in gene expression between embryos grown at 12C and
18C. 6.5− 8.5µg of DNase-treated total RNA was used as the input sample. mRNA was
isolated via two rounds of poly-A selection using 100µl of Dynabeads (Invitrogen). Bar-
coded SOLiD libraries were prepared using the RNA-seq protocol for the SOLiD Total
RNA-Seq kit and the SOLiD Transcriptome Multiplexing Kit (Applied Biosystems). Li-
brary quality was assessed using a 2100 Bioanalyzer (Agilent). Libraries were quantitated
using qPCR, and prepared for standard stand-specific SOLiD sequencing in equimolar
concentrations. 50bp single-end reads were generated on 2 slides by the IGSP Genome
Sequencing and Analysis Core Resource at Duke University.

1.2.2 Read mapping

←↩ Reads were pre-processed to separate barcoded samples and then mapped to the S.
purpuratus genome v3.1 (Sodergren et al., 2006, www.SpBase.org) using bowtie (Lang-
mead et al., 2009, v0.12.7) with the following parameters: (-C -n 2 -l 9 -e 100 -M 1 -t
-best -trim3 15).

1.2.3 Gene model curation

←↩ Reads were counted in gene models based on the gff3 file “GLEAN-3.1.gff3-chado-
UTR” both downloaded from www.SpBase.org. We cleaned this gff3 file in two ways
to improve the accuracy of our transcriptome estimates of gene expression differences:
First, we converted all features of type “3UTR” to ”exon” so that reads mapping within
annotated UTR regions would be counted towards that gene. Second, there are many
cases in which one gene model is nearly, or entirely covered by a gene model with a
different name. Reads mapping to the genome in locations covered by exons of multiple
genes are discarded by HTseq (http://www-huber.embl.de/users/anders/HTSeq)since
they cannot be unambiguously mapped to a single gene. These redundant gene models
increased the apparent number of genes in the sea urchin genome, while reducing the
number of genes that we could measure by RNAseq. First, we removed duplicate features
with the same seqid using the UNIX commands sort and uniq. Next, we checked each
gene model to see if it was overlapped by another gene model using the coverageBed
program in the BedTools suit (Quinlan & Hall, 2010). If more than 70% of a gene model

www.SpBase.org
www.SpBase.org
http://www-huber.embl.de/users/anders/HTSeq
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was overlapped by another gene model, we identified this second gene with the BedTools
program intersectBed and kept only the larger of the two gene models. If multiple gene
models overlapped each other under these criteria, we kept only the largest. If two gene
models completely overlapped and had identical lengths, we chose one randomly. After
this procedure, every gene model was unique over at least 30% of its length. This removed
in total 2,857 of the original gene models.

1.2.4 Analysis

←↩ We generated an average of 37 million reads per sample and counted the reads map-
ping uniquely to each of 26,428 gene models described above with HTseq. On average,
72% of the reads mapped to the genome (54% uniquely) and 31% mapped uniquely to
one gene model. Since counting variance is much higher for low-expressed transcripts,
we excluded all gene models with fewer than an average of 10 reads per sample. This
left a total of 14,454 genes, which we then tested for an effect of temperature on gene
expression. We assessed differential expression by culture temperature condition using
the R (v1.13.1, Team 2011) package edgeR (Robinson et al., 2010, v2.2.6). Samples
were normalized using the TMM method using default parameters. We estimated a
common trended dispersion, and then tagwise dispersions for each gene using default
parameters. For each of the 14,454 gene models, we fit a negative-binomial link gener-
alized linear model with factors representing the male parent, female parent and tem-
perature of the culture. We tested for an effect of temperature by comparing the full
model containing all of these effects (male parent, A vs. D; female parent, A vs. C vs.
D; and temperature: 12C vs. 18C) against the same model without the temperature
factor (reduced model) using likelihood ratio tests. We controlled the false discovery
rate (FDR) using the method of Benjamini & Hochberg (1995) implemented in the R
function p.adjust. Genes were deemed significantly differentially expressed by temper-
ature if their adjusted P -value was less than 0.05. Categorical enrichments of differ-
entially expressed genes were performed based on the mappings of S. purpuratus genes
to ENSEMBL proteins of Oliver et al. (2010). Tests for significant categorical enrich-
ments were performed using the wilcoxon.py script of the python package pyEnrichment
(www.duke.edu/~ofedrigo/Olivier_Fedrigo/PythonScripts.html), which tests if P -
values for differential expression for genes within a given category are smaller than ex-
pected given p-values for all other genes. For comparisons among genes, edgeR logConc
values were converted into Fragments Per Kilobase per Million mapped reads (RPKM) as
RPKM = exp(µ)/length × 106, where length is the sum of the exon lengths in kilobases
and µ is the model intercept calculated by edgeR.

www.duke.edu/~ofedrigo/Olivier_Fedrigo/PythonScripts.html
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1.3 DASL Assay

←↩ We used a DASL array (cDNA-mediated annealing, selection, extension and ligation,
Illumina) to measure the transcript concentrations of 73 genes in each of 192 samples
(Kuhn et al., 2004). The DASL platform is a method for measuring the expression of
a select set of genes in a large number of samples (Kuhn et al., 2004). This platform
is based on the technology underlying the GoldenGate genotyping platform produced by
Illumina. Briefly, the platform uses the following steps: A custom assay pool is created
by designing pairs of primers that target exons of the desired transcripts. The primer
pairs both have universal primer extensions, and the downstream primer also contains a
gene-specific capture sequence. When the primers hybridize to target cDNAs in solution,
a PCR amplification using the universal primers joins a fluorescent-labeled primer to the
gene-specific capture sequence. Individually labeled bead-types then capture fluorescent
PCR products based on these capture-sequences, and then fluorescence associated with
each bead is measured.

While sharing some features with any hybridization-fluorescence based expression tech-
nology, DASL differs from other, more common, microarray platforms in a number of ways
that necessitate the use of different methods of background correction, summarization and
normalization (Wong et al., 2008). For example, DASL uses many (about 30 on average)
individual beads per sample for each probe set, rather that the typical 1-3 on other mi-
croarray platforms, and rather than using a mismatch probe-set, as is used in Affymetrix
arrays, background normalization relies on a set of 27 bead-types with no complement in
the target genome.

Like all platforms for measuring gene expression, there are quality control and normal-
ization steps that must be taken before the gene expression data can be used in subsequent
analyses. Our principle concern was to remove artifactual biases that might induce corre-
lations among measures of different genes, or among measures of the same gene in different
genetic backgrounds, as these biases would affect our downstream genetic analyses. To
ensure a high standard of quality in the data, we wrote a customized pipeline in R (Team,
2010) for processing the raw data using many of the classes and methods from beadarray
package of Bioconductor (Dunning et al., 2007; Gentleman et al., 2004). Our pipeline in-
cluded five steps. 1) Identify and mask spatial artifacts within each array using the BASH
functions of beadarrray (Cairns et al., 2008). 2) Correct for background variation among
samples using the control probe distributions. 3) Identify poor quality samples 4) Test
for consistency among probes targeting the same gene. 5) Normalize intensities among
samples to control genes. All analysis was based only on the green channel intensities.
Each of these steps is described in more detail below.

We worked with Illumina to design a custom DASL assay to measure the expression
of the genes in the sea urchin embryogenic developmental gene regulatory network. We
designed 384 probes to target annotated exons of 77 genes based on annotations to build
2.1 of the S. purpuratus genome on SpBase (www.spbase.org). Where possible, we vali-

www.spbase.org
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dated the sequences from the sea urchin full genome sequence against targeted sequencing
efforts available in GenBank. We chose 3-6 probes with Illumina Final scores > 0.8 (App
version 6.4.1.0.0.0:2.0.0) for each gene. Illumina recommends using 3 probes per gene to
improve the precision of each gene expression measurement. We included more probes
when possible so that we could identify poorly performing probes based on the correla-
tions of all probes targeting the same transcript. The set of probes that survived quality
control steps (see below) and the sea urchin genes they target are listed in Table S4.

1.3.1 Mask problem areas in each array

←↩ Array-based formats can suffer from spatial artifacts - regions of the assay surface that
produce consistently different intensity readings. These may be due to camera or laser
shadows, human error in loading the samples, or inherent biases around the edge of the
array. If not accounted for, these effects can badly skew resulting analyses, even in cases
like the DASL assay where each gene expression level is interrogated by a large number
of probes (Cairns et al., 2008).

We used the adaptation of Harshlight to Illumina BeadArrays, BASH, implemented
by (Cairns et al., 2008) in the Bioconductor package, beadarray (Dunning et al., 2007)
with the following modified parameters: bgcorr=median as recommended for SAM arrays,
diffsig = 0.001, and no imputation within outlier regions.

The BASH algorithm relies on the variance in expression measures within each bead-
type as the statistic to identify spatial effects. We used log2-transformed values to identify
outlier beads for this analysis, as recommended by (Cairns et al., 2008). We have found
that log2-transformed intensities better identify outliers at the lower end of the distribu-
tion than does Iluminas recommended procedure. We chose an outlier cutoff of 2 mean
absolute deviations (MADs) from the bead median for each bead-type in each sample.
This is more conservative than the beadarray default and Illumina recommendation of 3
MADs. However, we find that this tends to eliminate more spurious beads.

Although some aspects of masks appear to be shared by most wells of the same plate
(batch of 96 samples), most spatial artifacts appear to be individual well-specific. Thus
we chose not to apply the same mask to all wells of a plate. We also observed that
certain rows and columns within a plate suffered more from imaging artifacts than other
wells. Overall, 8.4% (201072 of 2400798) of beads were removed by the masks. Of the
remaining beads, about 20% were removed based on the 2 MAD from the median bead-
specific cutoff. No probes ended up with less than 5 beads in any sample, and thus no
probes were removed based on too few measures within a sample.

1.3.2 Background correction

←↩ Background correction involves correcting for non-specific hybridization and for dif-
ferences in the camera intensity among arrays. Differences in background levels among
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samples, if left uncorrected, lead to strong positive correlations between low expressed
genes.

The DASL assay includes 27 non-specific bead-types intended to measure the back-
ground intensity of an array. We controlled for background variation and other technical
artifacts using a principle-components regression strategy using the control beads. Since
the intensity distribution of target and control probes was considerably different among
the two 96 sample assay plates, we performed this background correction separately for
each plate. For each plate, we performed a principle components analysis (PCA) on the
intensity measurements of the 27 control probes across the 96 samples using the prcomp
function in R. For the two plates, three and two axes, respectively each explained more
than 80% of the total variation in control intensities. Under the assumption that biolog-
ical differences among samples are unlikely to affect control probe intensities, patterns of
target probe intensity that are correlated with these important PCA axes are likely due
to technical artifacts in the DASL assay and can safely be removed. For each of the 384
target probes on each assay plate, we fit a linear model with the important PCA axes as
predictors, and used the residuals from these models as “background corrected” data in
downstream analyses.

1.3.3 Sample quality control

←↩ To identify outlier samples, we measured the pairwise Pearson correlations among all
pairs of samples. All but one sample had a correlation with at least one other sample
greater than 0.90. The largest correlation between this particular sample and all other
samples was 0.59. Thus, this sample was deemed sufficiently different from all other
samples and we removed it from all further analyses.

1.3.4 Tests for probe consistency

←↩ Each of the 384 probes was measured simultaneously in each sample, providing 3-6
independent estimates of the concentration of each target mRNA. Differences in intensity
among probes targeting the same transcript may be due to inherent chemical differences
among probes, splicing events between probes on the transcript, annotation errors of
portions of these genes in the S. purpuratus genome, or simply stochastic noise. Fixed in-
tensity differences among probes did not affect our analysis because all inference was based
on deviations away from the overall probe mean. However, we flagged cases where the dy-
namics of different probes targeting the same transcript were distinct, suggesting splicing
or annotation problems. To do this, we used data from a previous experiment using the
same DASL array on 72 S. purpuratus cultures measured at seven stages throughout the
embryonic period. For each of the 77 genes, after normalization and background correc-
tion, we measured the pairwise-correlations among the 3-6 target probes, and compared
these values to their pairwise correlations with all other probes. Probes were kept if at
least one of their correlation measures with the other probes on the target gene were
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among the top 5% of their correlations with all probes. Only genes with at least two
remaining probes were kept in the analysis. This filtering step resulted in the removal of
44 probes, leaving 2-6 probes targeting 73 genes (Table S4), and improved our confidence
that all remaining probes measured the intended transcripts.

1.3.5 Normalization

←↩ We normalized samples by subtracting the average (log2) intensity of the four probes
targeting the gene RBM8A. This gene was selected among three candidate normalization
genes as part of an parallel study (Garfield et al, in prep) based on its consistency in ex-
pression across development, and the fact that it was not part of the focal gene regulatory
network. If this gene were variable across samples, or variable in expression according
to male or female parent, this normalization would induce correlations among all other
genes. However, since it is outside of the network, these correlations are unlikely to be
stronger among directly interacting genes. To explore this potential bias, we also tested
two other independent normalization genes (CyclinT and SoxB1, the latter is part of the
network but only at earlier developmental stages), and with all three genes jointly, and
the reported patterns of male effect correlations between interacting genes were consistent
in all three cases (Table S8).

The measured expression of RBM8A did decline at 18oC according to the RNAseq
assay with a log2FC of -0.19, although this effect was not significant. Since the RNAseq
assay targets many more genes, normalization factors calculated for these data are likely
much more robust. Therefore, RBM8A may not be ideal for normalization across temper-
atures. To correct for this bias, we selected the four genes measured by DASL with the
smallest temperature log2FC in the RNAseq assay (Chordin, Not, Fmo2 and FoxN2/3 ),
and subtracted the mean expression of all five genes across all cultures at each temperature
from each sample. This adjustment made the estimated temperature effects across the
two platforms much more similar (Fig. S2B). However, with or without this adjustment,
we observed no correlation of temperature responses among directly interacting genes in
the focal gene regulatory network.

1.3.6 DASL repeatability

←↩ To assess the overall quality of the DASL assay, we quantified the Pearson correlations
among technical and biological replicates. 16 technical replicates of the same sample were
run at an earlier time. These values were all high: > 0.95 for technical replicates, > 0.87
for biological replicates.
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2 Quantitative genetics of gene expression

←↩ The observed variation among cultures in the expression of each of these genes reflects
biological differences induced by the experimental design (temperature and male and
female parent), by random differences in environments among individuals and cultures
(spatial effects, embryo density, water condition, embryo stage and health), and measure-
ment noise in the DASL system. Our experimental design allowed us to effectively isolate
the effects of temperature and parentage from the random sources of error.

Among-individual variation was not assessed because not enough RNA could be col-
lected per embryo. Instead, transcript levels were measured at the level of whole cultures,
comprising hundreds of larvae, effectively averaging expression across full-sib cohorts.
This feature of our experiment precludes the possibility of assessing narrow-sense her-
itability (h2 = VA

VP
) of expression since phenotypic variation among individuals (VP ) is

unknown. However, it does not affect estimates of the additive genetic variance (VA) or
other measures of evolvability such as IA = VA

X̄2 (Houle, 1992).

2.1 Quantitative Genetic Model

2.1.1 Model Specification

←↩ To quantify the effects of the environment (temperature treatment), genetic back-
ground, and other parental differences on the expression of each of these genes, we de-
signed a Bayesian hierarchical mixed effect model. The design and interpretation of this
model is based on the description of the North Carolina II breeding design in Lynch &
Walsh (1998), while the prior structure and Gibbs algorithms are built on the treatments
of Sorensen & Gianola (2010) and Hadfield (2010).

For each of the 73 genes, the observed data is y, a (r ∗191)×1 vector representing the
probe intensities of the r (2-6, depending on gene) probes in each of the 191 samples that
passed earlier quality control steps. Our interest is in overall transcript expression in each
sample, which we treat as an unobserved latent variable, u, and estimate its value based
on the r probes. We model the effects of temperature, parents and developmental stage
on these estimated sample expression values. Our hierarchical model can be represented
as:

yi,j,m,n = µi + uj,m,n + ei,j,m,n (1)

uj,m,n = f(Tj, Sj,b,Mm, Fn, Dm,n) + εj,m,n

(µ′ b′ M ′
m F ′n Dm,n)′ ∼ π(θ)

where i = {1, . . . , r} indexes a particular probe, j = {1, . . . , 191} a culture, m = {1, . . . , 8}
a male parent and n = {1, . . . , 8} a female parent. Here, µi, i = {2, . . . , r} is the fixed
intensity difference for probe i across all cultures (µ1 fixed at zero for identifiability of
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the uj,m,n); Tj and Sj are the culture’s temperature and mean developmental stage, both
known variables; b are the fixed effects for temperature and stage; Mm and Fn are (2×1)
vectors of the male and female “breeding values” and parent x temperature effects for
parents m and n for the gene of interest; and Dm,n is the interaction effect between male
m and female n.

The function f specifies the linear mixed effect gene-by-environment model for gene
expression:

f(Tj, Sj,b,Mm, Fn, Dm,n) = b′


1
Tj

T 2
j − ¯(T 2

j )
Sj

+M ′
m

(
1
Tj

)
+ F ′n

(
1
Tj

)
+Dm,n (2)

Values of the covariates Tj were shifted by scale and location transformations to the
set: {−0.5, 0, 0.5}, corresponding to the three experimental temperatures: 12oC, 15oC
and 18oC. Thus, the parameter b2 represents the change in expression from 12oC to 18oC,
and (b1 b2 b3) models gene expression as a quadratic function of temperature. Priors on
all model parameters, π(θ), are specified below.

The model can be written in matrix form as:

y = XY

(
µ
u

)
+ E (3)

u = XUb + ZMa + ZF f + ZDd + ε

This notation roughly follows Schaeffer (2004). Here, XY is the design matrix relating
fixed probe effects (µ) and latent transcript expression (u) to observed probe intensities.
XU is the fixed effect design matrix for the temperature and developmental stage effects,
and ZM , ZF and ZD are the random effect incidence matrices. a = (M ′

1 M
′
2 . . . M ′

8)′ is
a vector of male effects on expression (breeding values). The two elements for each male
are the intercept and slope of a linear function of temperature - the random regression
coefficients. f = (F ′1 F

′
2 . . . F ′8)′ is similarly structured for female effects, and d is the

vector of parent interactions. The matrices ZM and ZF are modified incidence matrices
which relate the random regression of male or female effects on temperature to u. Each
consecutive pair of columns has rows: (0 . . . 0 1 Tj 0 . . . 0) which is non-zero only in the
elements corresponding the the male (female) parent of the sample.

The fixed effects, µ and b are assigned diffuse independent normal priors:

(
µ
u

)
∼ N

(
0, 103 × I3+r−1

)
(4)

where 0 is the zero vector and Ik is the k-dimensional identity matrix.
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The random effects, a, f and d are assigned independent multivariate normal priors:

 a
f
d

 ∼ N

0,

 I8 ⊗G 0 0
0 I8 ⊗ ΣF 0
0 0 σ2

d × I32

 (5)

where G and ΣF are 2 × 2 covariance matrixes for the male and female effects, respec-
tively, σ2

d is the variance of interaction effects, and the symbol ⊗ represents the Kronecker
product. The covariances G and ΣF allow non-zero covariance between the intercept
and slope coefficients of the random regression functions of temperature for the male and
female effects.

The noise terms, ei,j,m,n and εj,m,n are assigned t-distributions (given σ2
Y and σ2

U ,
respectively) with the following hierarchical specification:

ei,j,m,n ∼ N(0, σ2
Y /λi,j,m,n) (6)

εj,m,n ∼ N(0, σ2
U/δj,m,n)

λi,j,m,n ∼ Ga(aY , bY )

δi,j,m,n ∼ Ga(aU , bU)

1/σ2
Y ∼ Ga(gY , hY )

1/σ2
U ∼ Ga(gU , hU)

with Ga(a, b) the gamma distribution with shape a and rate b. This prior specification
allows heavier tails than the commonly used normal distribution for the model residuals.
This reduces the influence of “outlier” measurements, for example where particular probe
measurements are far from expected given other probes in the same sample. We found
this distribution improved the stability of the estimates of transcript levels and parent
effects, given the often noisy DASL measurements.

We placed inverse Wishart priors on the two covariance matrices of random effects,
and a gamma prior on the inverse random interaction effect variance:

G ∼ iW(S, v) (7)

ΣF ∼ iW(S, v)

σ2
d ∼ Ga(ad, bd)

with iW(S, v) the inverse Wishart distribution with v degrees of freedom, and inverse
scale matrix S.
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2.1.2 Implementation

We implemented a Gibbs sampler in R v1.13.1 to fit this hierarchical mixed effects model.
In sequence, we updated the random and fixed effects and variances of the probe and
sample level models. The posterior of all parameters is:

p(µ,u,b, a, f,d,G,ΣF , σ
2
d, λ, δ, σ

2
Y , σ

2
U | y) ∝ (8)

p(y | µ,u, λ, σ2
Y )

×p(u | b, a, f,d, δ, σ2
U)p(a, f,d | G,ΣF , σ

2
d)

×π(b, σ2
Y , σ

2
U , λ, δ,G,ΣF , σ

2
d)

The update for the latent transcript expression variables, u is a draw from the multi-
variate normal density given by:

u | θ−u ∼ N
(
û,C−1

)
(9)

where θ−u represents all model parameters except u and:

C = X′Y Σ−1
Y XY + Σ−1

U (10)

û = C−1
(
y′Σ−1

Y XY + (XUb + ZMa + ZF f + ZDd)′Σ−1
U

)
ΣY = diag(σ2

Y /λi,j,m,n)

ΣU = diag(σ2
U/δj,m,n)

and diag(ai) is the diagonal matrix with entries ai.
The parameters b, a, f and d are updated in a single block update by drawing from

the multivariate normal density:


b
a
f
d

 | θ−b,a,f,d ∼ N
(
r,C−1

)
(11)

where:

C = W′Σ−1
U W + Σ−1

r (12)

r = C−1
(
u′Σ−1

U W
)

W = [XU ZM ZF Zd]

ΣU = diag(σ2
U/δj,m,n)

Σr = (103 × I3)⊕ (I8 ⊗G)⊕ (I8 ⊗ ΣF )⊕ (σ2
d × I32)
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⊕ is the matrix direct sum, and ⊗ is the Kronecker product, as before.
Updates of the random effect (co)variance parameters are given as draws from inverse

Wishart and inverse Gamma distributions:

G | θ−G ∼ iW
(
(S + vec−1(a)vec−1(a)′, (v + 8)

)
(13)

ΣF | θ−ΣF
∼ iW

(
(S + vec−1(f)vec−1(f)′, (v + 8)

)
σ2
d | θ−σ2

d
∼ iG

(
(ad + 32/2), bd +

∑32
k d2

k

2

)
where iG(a, b) is the inverse Gamma distribution with shape a and rate b, and vec−1 is
the inverse vectorization operator that takes (for example) the vector a and folds it into
a 2× 8 matrix. The numbers 8 and 32 in these equations refer to the number of male or
female parents (8), and length of the vector d, respectively.

Finally, updates for the residual parameters of the models for y and u consist of a
series of independent draws from univariate gamma distributions:

1/σ2
Y | θ−σ2

Y
∼ Ga

((
gY +

191 ∗ r
2

)
, hY +

||diag(λ
1/2
i,j,m,n)r̂Y ||2

2

)
(14)

1/σ2
U | θ−σ2

U
∼ Ga

((
gU +

191

2

)
, hU +

||diag(δ
1/2
j,m,n)r̂U ||2

2

)

λ | θ−λ ∼ Ga

((
aY +

1

2

)
, bY +

(r̂Y )2

2σ2
Y

)
δ | θ−δ ∼ Ga

((
aU +

1

2

)
, bU +

(r̂U)2

2σ2
U

)
with ||x||2 the squared Frobenious norm, (x)2 the element-wise square of the vector x,
and Ga(a,b) a vector of independent gamma distributions all with scale a, but each with
a different shape given by the appropriate entry of the vector b. Here, the residual vectors
are:

r̂Y = y−XY

(
µ
u

)
(15)

r̂U = u− (XUb + ZMa + ZF f + ZDd)

2.1.3 Prior hyperparameters

←↩ Prior hyper-parameters used in this paper are listed in Table S8. Scale values for
the gamma priors of variance components were chosen so that these distributions were
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proper, but relatively uninformative. Since we had no prior expectation that genetic,
environmental or residual variances should be higher for any particular gene, prior means
for the variances were chosen proportional to the observed total variance of each gene.
While not fully Bayesian since the prior relies on observed data, this procedure uses the
data minimally and prevents the prior from having more influence on some genes than
others. In particular, the prior mean for the variance of residuals of probe intensity (σ2

Y )
was chosen proportionally to the observed total variance of probe intensities, while the
prior means for the variance of residuals of transcript expression (σ2

U) and the diagonal
elements of G, ΣF and σ2

d were all chosen proportionally to the observed variance of mean
probe intensities per sample. Prior means for the elements of λ and δ were set to one.

We tested the sensitivity of this analysis to prior choice by re-running all models and
downstream analyses with several alternative choices of prior hyper-parameters. These
alternative choices are listed in Table S8. In particular, we explored the sensitivity of
model fits to each class of parameter, either by making the prior shapes more peaked
over their mean, or shifting the prior means. Increasing the scale parameters of δ had
no effect, while increasing the scale parameters of λ increased the appearance of male-
by-female effects. This is consistent with the presence of strong outlier points biasing
estimates of parameters with less data. The prior mean values for the male and female
effect variances affected the magnitude of estimated male and female effects on expression,
but did not change the relative ordering of male or female effects within or among genes.
Setting the prior means to 10% of observed among-culture variance resulted in posterior
means in a similar range, suggesting that the priors did not induce a strong, consistent
bias among genes. The prior mean for the “fixed” effect variances had no effect for values
of the exponent greater than ∼ 2. Below this, the prior variance of these effects shrunk
the fitted values towards zero.

2.1.4 MCMC estimation

←↩ We performed posterior simulation by running a single MCMC chain for each gene,
allowing a burn-in period of 10,000 iterations and then drawing 1,000 posterior samples
of all parameters with a thinning rate of 10. We assessed convergence by measuring the
autocorrelation of each parameter, and by re-running each chain from different starting
values. All parameters appeared well converged by these measures. Posterior distributions
were summarized as a mean and a credible interval spanning the central 95% of posterior
samples. Male, female, temperature, parent-interaction and parent-by-temperature effects
were tested for “significance” by inspecting the credible intervals for all parameters of a
class (ex. breeding values for each of the eight male parents). If any individual effect, or
temperature coefficient, had a credible interval that did not cross zero, we counted the
class as being important. This is a relatively conservative test as it relies on at least one
individual having a very large (or small) breeding value. For downstream analyses, we
used posterior means as estimates of each effect.
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Table S1. Primer sequences, amplification efficiencies and original citations for the
qPCR assays used to assay Hsp70 and Hsp90 expression.←↩

Gene Primers R2 Efficiency Citation

RBM8A
ATGAAGCCGAAGAGGATGAA 0.993 98.35 This study
GACCCTGGAACTCCTCATCA

Hsp70
AAGATATGAGGTCCAACCCAAGAT 0.999 96.2 1

TGCTGAAGCACTGCTTGACA

Hsp90
AGGAGGAAGCGATCAAACTG 0.982 108.82 This study
TCATCATACGGTTGACCTCAG

1 (Hammond & Hofmann, 2010)

Table S2. Raw qPCR data on Hsp70 and Hsp90. Data file containing
non-normalized CT scores for the two assayed chaperone genes, Hsp70 and Hsp90, and
the control gene, RBM8A. Assays were run in triplicate, and samples in which either the
target gene or the control gene had a standard deviation of Ct scores > 0.5 were
discarded. Control genes were only used if they were run on the same plate as the target
genes. File: qPCR_Ct_scores.dat←↩

Table S3. Sample info for RNA-seq. The eight samples chosen for RNA-seq
analysis on the SOLiD 3 plus platform are shown. For each sample, the male and female
parents and temperature treatment are listed, as well as statistics from the RNA-seq
output. Total reads is the total count of reads reported from the run. Mapped reads is
the number of reads that mapped somewhere in the S. purpuratus v3.1 genome. Unique
reads had a unique best match to the genome according to Bowtie. Gene reads were
reads that mapped uniquely to an exon of one gene model.←↩

Sample Female Male Temp Total reads mapped reads unique reads Gene reads

AA2-18 A A 18C 32607339 22675408 16947450 9582895
AD1-18 A D 18C 44858154 32380417 24068050 13556927
DA2-18 D A 18C 40503392 30233196 22623508 15243065
CD1-18 C D 18C 35453186 25666069 19105707 10818142
AD2-12 A D 12C 32653859 24409674 18079737 10368740
CA2-12 C A 12C 43882450 30361002 22447485 12543146
CD1-12 C D 12C 32525751 24125691 17557885 10532719

qPCR_Ct_scores.dat
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Table S4. Annotation information for developmental genes assayed by
DASL. Each of the 73 developmental genes plus controls analyzed are listed, along with
official S. purpuratus gene IDs (SPU), a classification of gene function, whether the gene
is involved in an active regulatory event during gastrulation and the embryonic
territories in which the gene is expressed during gastrulation. Annotation information
on gene activity was extracted from the 27-30h time points of the BioTapestry
representations of the endomesodermal network (Longabaugh et al., 2005,
www.biotapestry.org) and the ectodermal network from the Davidson lab website:
http://www.its.caltech.edu/~mirsky/) as of September 05, 2011. File:
Network_gene_annotation.dat←↩

Table S5. Gene network relationships among target developmental genes.
The 93 known regulatory events among 52 of the 72 assayed developmental genes are
listed. For each regulatory event, the upstream and downstream gene are listed, as well
as the timing of the event (hpf at 15C), its location within an embryo, and whether the
downstream gene is promoted or repressed. Annotation information was extracted from
the BioTapestry representations of the endomesodermal and ectodermal network as
above. File: Network_interactions_list.dat←↩

www.biotapestry.org
http://www.its.caltech.edu/~mirsky/
Network_gene_annotation.dat
Network_interactions_list.dat
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Table S6. Female parent effects on heat shock gene expression at 18C but
not 12C. Both Hsp70 and Hsp90 had significant female parent effects at 18C, but not
at 12C, and no significant male parent effects at either temperature. ANOVA tables for
the model: log2(exp)ij = Femalei + Malej + eij are shown for each gene x temperature
combination.←↩

Hsp70 12C Df Sum Sq Mean Sq F value Pr(>F)
Female 3 8.88 2.96 0.52 0.6770
Male 3 4.46 1.49 0.26 0.8535
Residuals 15 85.95 5.73

Hsp70 18C Df Sum Sq Mean Sq F value Pr(>F)
Female 3 20.24 6.75 6.25 0.0058
Male 3 8.00 2.67 2.47 0.1017
Residuals 15 16.20 1.08

Hsp90 12C Df Sum Sq Mean Sq F value Pr(>F)
Female 3 2.50 0.83 0.47 0.7112
Male 3 2.93 0.98 0.54 0.6596
Residuals 14 25.12 1.79

Hsp90 18C Df Sum Sq Mean Sq F value Pr(>F)
Female 3 11.71 3.90 6.82 0.0046
Male 3 2.03 0.68 1.18 0.3511
Residuals 14 8.01 0.57

Table S7. Embryo morphology data. Embryo lengths and stages measured on
12-23 embryos per cultures. Culture info (Experimental Block, Female parent, Male
parent, Temperature) is provided. File: morphology_data.dat←↩

morphology_data.dat
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Table S8. Prior hyperparameters used in this study. σ2
ŝ is the variance of culture

means, and σ2
p̂ is the residual probe variance (over all probes) after removing the culture

means. Each alternative listed was tested individually by re-fitting the model for each
gene, and re-testing the major results.←↩

prior values alternatives tested sensitivity of results

aY 5 100 More interaction effects signifi-
cant

bY aY
gY 2
hY σ2

p̂ × gY
aU 100 5 none
bU aU
gU 2
hU σ2

ŝ × gU
S

σ2
ŝ(ν−3)

10
I2

σ2
ŝ(ν−3)

3
I2,

σ2
ŝ(ν−3)

30
I2 Magnitude of G and ΣF in-

creases, or decreases, respectively,
but genetic variance still tends to
be larger than temperature effects

ν 4 3.25
ad 2 5
bd

10
σ2
ŝ(ad−1)

3
σ2
ŝ(ad−1)

, 30
σ2
ŝ(ad−1)

Magnitude of male x female ef-
fects, changes, but not signifi-
cance

σ2

fixed 3 1, 6 none

normGene RBM8A CyclinT, SoxB1, (RBM8A,
CyclinT, and SoxB1 )

None for CyclinT. Male effect
correlations were reduced with
SoxB1 or all three genes together,
but correlations in network were
still significant
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Figure S1. Dendrograms showing relationships among significantly enriched
PANTHER categories for up- (A) and down- (B) regulated genes. Distances
between two categories are calculated based on the proportion of the genes (with
adjusted temperature effect P < 0.05) in the smaller category that are also part of the
larger category. When two categories have a distance of zero, the smaller category is
entirely contained within the larger category. All categories displayed were significantly
enriched for up- or down-regulated genes with an adjusted enrichment P < 0.05.←↩
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Figure S2. Estimates of temperature responses by RNA-seq and DASL were
consistent. A) Estimated temperature responses across the two replicates of the
experiment, as measured by DASL (r=0.71). B) Estimated log2 fold change (log2FC)
between 12C and 18C for genes measured by both RNA-seq and DASL. The two
estimates are well correlated (r=0.68) for DASL estimates from the first replicate of the
experiment (all RNA-seq samples were from this run), but RNA-seq consistently
estimated larger expression responses. The four genes used to re-normalize DASL
expression across temperatures are shown as hollow circles. These genes were chosen as
the five genes with the smallest responses according to RNAseq. The diagonal line is a
least-squares regression of the DASL estimates on the RNA-seq estimates.←↩
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Figure S3. Percentage of variation in gene expression explained by
temperature, stage and parental effects. Bean plots (Kampstra, 2008) showing the
percent of the total observed variation accounted for by each of the modeled factors over
the 72 genes. Greg curves show kernel densities and black dashes show the values for
each gene. Total variance was calculated as the variance in mean intensities for each
sample across the 2-6 probes that targeted each gene. The full model is described
above.←↩
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Figure S4. Cultures were slightly more variable at higher temperatures, and
differences in sampling time by temperature was small. A) 18C and 12C
temperatures induced a slight increase in the variability in developmental rate among
embryos within each culture. Boxplots show median and quantiles of the distribution of
the standard deviation of embryonic stages (proportion of the blastocoel traversed by
the archenteron, see Fig. 1A) within cultures at each temperature. B) Mean stage at
sampling was slightly higher at 15C (and less so at 18C) than 12C. C) Mean stage
differences among cultures accounted for less gene expression variation than the
temperature treatment for the majority of genes, including all genes with a significant
temperature effect. The diagonal lines is y = x.←↩
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